Naturally occurring truncated trkB receptors have dominant inhibitory effects on brain-derived neurotrophic factor signaling.
نویسندگان
چکیده
trkB encodes a receptor tyrosine kinase activated by three neurotrophins--brain-derived neurotrophic factor (BDNF), neurotrophin-3, and neurotrophin-4/5. In vivo, three isoforms of the receptor are generated by differential splicing--gp145trkB or the full-length trkB receptor, and trkB.T1 and trkB.T2, two cytoplasmically truncated receptors that lack kinases, but contain unique C termini. Although the truncated receptors appear to be precisely regulated during nervous system development and regeneration, their role in neurotrophin signaling has not been directly tested. In this paper, we studied the signaling properties and interactions of gp145trkB, trkB.T1, and trkB.T2 by expressing the receptors in a Xenopus oocyte microinjection assay. We found that oocytes expressing gp145trkB, but not trkB.T1 or trkB.T2, were capable of eliciting 45Ca efflux responses (a phospholipase C-gamma-mediated mechanism) after stimulation by BDNF. When trkB.T1 and trkB.T2 were coexpressed with gp145trkB, they acted as dominant negative receptors, inhibiting the BDNF signal by forming nonfunctional heterodimers with the full-length receptors. An ATP-binding mutant of gp145trkB had similar dominant inhibitory effects. Our data suggest that naturally occurring truncated trkB receptors function as inhibitory modulators of neurotrophin responsiveness. Furthermore, the homodimerization of gp145trkB appears to be an essential step in activation of the BDNF signaling cascade.
منابع مشابه
P22: The Association between TrkB Signaling Pathway and NMDARs in LTP Induction
Long-term potentiation (LTP) is a biological process of learning and memory after a high-frequency train of electrical stimulations. By binding of brain-derived neurotrophic factor (BDNF) to Tropomyosin receptor kinase B (TrKB) receptors in postsynaptic neurons, tyrosine kinase Fyn is bound to these receptors and hereby plays a mediating role to binding and activation of N-methyl-D-aspartic aci...
متن کاملEffect of Endurance Training on Brain Derived Neurotrophic Factor (BDNF) and Tyrosine Kinase B (Trkb) Level in Hippocampus of Ischemic Induced Male Rats
Introduction: Brain derived neurotrophic factor (BDNF) have neuroprotective effect through binding with tyrosine kinase B (TrkB). Thus the Aim of the present study was to investigate the effects of eight weeks endurance training on BDNF and TrkB levels in the hippocampus of ischemic induced male rats. Methods: 40 Male wistar rats (12 weeks old and 228.19±21.18g) were divided into four groups, i...
متن کاملSelective binding and internalisation by truncated receptors restrict the availability of BDNF during development.
The tyrosine kinase receptor trkB is thought to mediate the biological actions of brain-derived neurotrophic factor. This receptor is expressed by a large variety of neurons during development. Truncated trkB molecules lacking the tyrosine kinase domain have also been described, but their functions remain elusive. In order to gain insight into their role, we studied the pattern of expression an...
متن کاملExpression of a dominant negative TrkB receptor, T1, reveals a requirement for presynaptic signaling in BDNF-induced synaptic potentiation in cultured hippocampal neurons.
We have developed a method to analyze the relative contributions of pre- and postsynaptic actions of a particular gene product in neurons in culture and potentially in slices using adenovirus-mediated gene transfer. A recombinant virus directed the expression of both a GFP reporter protein and TrkB.T1, a C-terminal truncated dominant negative TrkB neurotrophin receptor. When expressed in the pr...
متن کاملBDNF–TrkB signaling in striatopallidal neurons controls inhibition of locomotor behavior
The physiology of brain-derived neurotrophic factor signaling in enkephalinergic striatopallidal neurons is poorly understood. Changes in cortical Bdnf expression levels, and/or impairment in brain-derived neurotrophic factor anterograde transport induced by mutant huntingtin (mHdh) are believed to cause striatopallidal neuron vulnerability in early-stage Huntington's disease. Although several ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 16 10 شماره
صفحات -
تاریخ انتشار 1996